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University of California, Berkeley
Physics H7B Spring 1999 (Strovink)

SOLUTION TO PROBLEM SET 1

1. RHK problem 22.9
It is an everyday observation that hot and cold
objects cool down or warm up to the temperature
of their surroundings. If the temperature differ-
ence ∆T between an object and its surroundings
(∆T = Tobj − Tsur) is not too great, the rate of
cooling or warming of the object is proportional,
approximately, to this difference; that is,

d∆T

dt
= −A(∆T ),

where A is a constant. Ths minus sign appears
because ∆T decreases with time if ∆T is pos-
itive and increases if ∆T is negative. This is
known as Newton’s law of cooling.

(a) On what factors does A depend? What are
its dimensions?
Solution: The LHS (and therefore the RHS)
of the above equation have dimensions C◦/sec,
so A must have dimension sec−1. Suppose that
the heat flowing between the object and its sur-
roundings is conducted by a thermal barrier
(i.e. a “skin” on the object that tends to in-
sulate it from its surroundings). Then, from
RHK Eq. 25.45, A should be proportional to the
thermal conductivity of that barrier and to its
area, and inversely proportional to the barrier’s
thickness.

(b) If at some instant t = 0 the temperature
difference is ∆T0, show that it is

∆T = ∆T0 exp (−At)

at a time t later.
Solution: Rearranging and solving the above

equation, with dt′ substituted for dt,

d∆T

∆T
= −A dt′

∫ t

0

d∆T

∆T
= −

∫ t

0

A dt′

ln
(
∆T (t)

) − ln
(
∆T (0)

)
= −At

ln
(∆T (t)
∆T (0)

)
= −At

∆T (t)
∆T (0)

= exp (−At)

∆T (t) = ∆T0 exp (−At) .

2. RHK problem 22.28
As a result of a temperature rise of 32 C◦, a
bar with a crack at its center buckles upward,
as shown in the figure. If the fixed distance
L0 = 3.77 m and the coefficient of linear ther-
mal expansion is 25 × 10−6 per C◦, find x, the
distance to which the center rises.

Solution: In Physics H7B, all problems in-
volving numbers should be solved completely in
terms of algebraic symbols before any numbers
are plugged in (otherwise it is much more diffi-
cult to give part credit). Let
L0 = fixed distance = 3.77 m
x = distance to which the center rises
L = thermally expanded total length of the
buckled bar (twice the hypotenuse of the right
triangle whose legs are x and L0/2)
α = coefficient of linear thermal expansion =
25× 10−6 per C◦

∆T = temperature rise = 32 C◦



2

Then

L = L0 + α∆T

x2 = (L/2)2 − (L0/2)2

x =
L0

2

√
(1 + α∆T )2 − 1

= 0.0754 m .

3. RHK problem 22.30
The area A of a rectangular plate is ab. Its coef-
ficient of linear thermal expansion is α. After a
temperature rise ∆T , side a is longer by ∆a and
side b is longer by ∆b. Show that if we neglect the
small quantity ∆a∆b / ab (see the figure), then

∆A = 2αA∆T .

Solution: Let
A = original area of rectangular plate
a = original width of plate
b = original height of plate
A+∆A = thermally expanded area of plate
a+∆a = thermally expanded width of plate
b +∆b = thermally expanded height of plate
α = coefficient of linear thermal expansion

Then

A+∆A = (a+∆a)(b +∆b)
= ab+ a∆b+ b∆a+∆a∆b

A = ab

A +∆A − A = ab+ a∆b+ b∆a+∆a∆b − ab

∆A = a∆b+ b∆a +∆a∆b

= ab
(∆b

b
+

∆a

a
+

∆a∆b

ab

)

∆A ≈ ab
(∆b

b
+

∆a

a

)

∆a

a
=

∆b

b
= α∆T

∆A ≈ A(α∆T + α∆T )
∆A

A
≈ 2α∆T .

4. RHK problem 25.47
The average rate at which heat flows out through
the surface of the Earth in North America is 54
mW/m2, and the average thermal conductivity
of the near surface rocks is 2.5 W/m·K. Assum-
ing a surface temperature of 10 ◦C, what should
be the temperature at a depth of 33 km (near
the base of the crust)? Ignore the heat gener-
ated by radioactive elements in the crust; the
curvature of the Earth can also be ignored.
Solution: Let
H/A = heat flow per unit area through Earth’s
surface = 54 × 10−3 W/m2

k = thermal conductivity of near surface rock =
2.5 W/m·K
T0 = temperature at earth’s surface = 10 ◦C
D = depth at which we wish to know the tem-
perature = 33 × 103 m
T = temperature at depth D
Then, using RHK Eq. 25.45,

H

A
= k

∆T

∆x

= k
T − T0

D
H

A

D

k
= T − T0

T0 +
H

A

D

k
= T

723 ◦C = T .



3

5. RHK problem 25.50
A cylindrical silver rod of length 1.17 m and
cross-sectional area 4.76 cm2 is insulated to pre-
vent heat loss through its surface. The ends are
maintained at temperature difference of 100 C◦

by having one end in a water-ice mixture and
the other in boiling water and steam.

(a) Find the rate (in W) at which heat is trans-
ferred along the rod.
Solution: Let
L = length of cylindrical silver rod = 1.17 m
A = area of rod = 4.76 × 10−4 m2

k = thermal conductivity of silver = 428 W/m·K
∆T = temperature difference between ends of
rod = 100 C◦.
H = dQ/dt = rate at which heat is transferred
along the rod.
Then, using RHK Eq. 25.45

H = kA
∆T

x

= kA
∆T

L
= 17.4 W .

(b) Calculate the rate (in kg/sec) at which ice
melts at the cold end.
Solution: Let
Lf = latent heat of fusion of water = 333 × 103

J/kg
dm/dt = rate in kg/sec at which ice melts at the
cold end
Then, using RHK Eq. 25.7,

Q = Lf m

dQ

dt
= Lf

dm

dt

H = Lf
dm

dt
H

Lf
=

dm

dt

5.23× 10−5 kg/sec =
dm

dt
.

Hints: The thermal conductivity of silver is 428
W/m·K. The latent heat of fusion of water is
333 kJ/kg.

6. RHK problem 25.58
A container of water has been outdoors in cold
weather until a 5.0-cm-thick slab of ice has
formed on its surface (see the figure). The air
above the ice is at −10 ◦C. Calculate the rate of
formation of ice (in centimeters per hour) on the
bottom surface of the ice slab. Take the thermal
conductivity and density of ice to be 1.7 W/m·K
and 0.92 g/cm3, respectively. Assume that no
heat flows through the walls of the tank.

Solution: Let
A = area of slab of ice on water’s surface
h = present thickness of slab = 0.05 m
T = temperature of air above ice = −10 ◦C
T0 = temperature at which water freezes = 0 ◦C
k = thermal conductivity of ice = 1.7 W/m·K
ρ = density of ice = 0.92 × 103 kg/m3

Lf = latent heat of fusion of water = 333 × 103

J/kg
H = dQ/dt = heat flow (in W) through the ice
dm/dt = rate of formation of ice (in kg/sec) on
the bottom surface of the slab
dh/dt = rate of change of ice thickness (in
m/sec).
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Then, using RHK Eqs. 25.45 and 25.7,

H = kA
∆T

∆x

= kA
T0 − T

h
Q = Lf m

dQ

dt
= Lf

dm

dt

H = Lf
dm

dt

kA
T0 − T

h
= Lf

dm

dt
ρhA = m

dh

dt
=

1
ρA

dm

dt

=
1

ρALf
Lf

dm

dt

=
kA

ρALf

T0 − T

h

=
k

ρLf

T0 − T

h

= 1.11× 10−6 m/sec
= 0.400 cm/hr .

Note that the inverse dependence of dh/dt upon
h requires h to increase only as the square root
of the time t. Our numerical result for the rate
of growth of the ice thickness is valid only when
the ice has a particular thickness (5 cm).

7. RHK problem 23.16
A mercury-filled manometer with two unequal-
length arms of the same cross-sectional area is
sealed off with the same pressure p0 of perfect gas
in the two arms (see the figure). With the tem-
perature held constant, an additional 10.0 cm3

of mercury is admitted through the stopcock at
the bottom. The level on the left increases 6.00
cm and that on the right increases 4.00 cm. Find
the original pressure p0.

Solution: Let
ρ = density of Hg = 13.6 × 103 kg/m3

g = acceleration of gravity at earth’s surface =
9.81 m/sec2

L0 = initial height of gas in left arm of manome-
ter = 0.50 m
R0 = initial height of gas in right arm of
manometer = 0.30 m
L = final height of gas in left arm of manometer
= 0.44 m
R = final height of gas in right arm of manome-
ter = 0.26 m
A = cross-sectional area of each manometer arm
p0 = initial pressure in both arms of manometer
pL = final pressure in left arm of manometer
pR = final pressure in right arm of manometer
NL = no. of gas molecules in left arm of manome-
ter
NR = no. of gas molecules in right arm of
manometer
kB = Boltzmann’s constant
T = (constant) temperature
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Applying the perfect gas law,

p0AL0 = NLkBT

p0AR0 = NRkBT

pLAL = NLkBT

pRAR = NRkBT

p0L0 = pLL

p0R0 = pRL

p0
L0

L
= pL

p0
R0

R
= pR

(I) pR − pL = p0

(R0

R
− L0

L

)
.

Using Archimedes’ principle (first equation on
RHK page 387), the difference (L0−L)−(R0−R)
in final height of Hg between the two arms is
proportional to the final pressure difference:

A(pR − pL) = ρgA
(
(L0 − L)− (R0 − R)

)
(II) pR − pL = ρg

(
(L0 − L)− (R0 − R)

)
.

Combining equations (I) and (II),

p0

(R0

R
− L0

L

)
= ρg

(
(L0 − L)− (R0 − R)

)

p0 = ρg
(L0 − L)− (R0 − R)

R0/R − L0/L

= 1.526× 105 Pa
= 1.506 atm .


